Search results for "fish embryo"

showing 7 items of 7 documents

zHSF1 modulates zper2 expression in zebrafish embryos

2018

International audience; HSF1 is a transcription factor that plays a key role in circadian resetting by temperature. We have used zebrafish embryos to decipher the roles of zHsf1, heat and light on zper2 transcription in vivo. Our results show that heat shock (HS) stimulated zper2 expression in the dark but has no cumulative effect combined with light. After light exposition, zper2 expression was 2.7 fold increased threefold in the hsf1-morphants in comparison to control embryos. Our results show that zHsf1 plays a positive role in HS-driven expression of zper2 in the dark but seems to act as an attenuator in the presence light.

0301 basic medicinezHSF1Physiologycrispants03 medical and health sciencesHeat Shock Transcription FactorsTranscription (biology)In vivoPhysiology (medical)AnimalsCircadian rhythm[ SDV.BDD ] Life Sciences [q-bio]/Development BiologyEye ProteinsHSF1ZebrafishTranscription factorzper2biologyChemistryfungiGene Expression Regulation DevelopmentalEmbryoPeriod Circadian ProteinsZebrafish Proteinsbiology.organism_classificationzebrafishCircadian RhythmCell biology030104 developmental biologyZebrafish embryomorpholino knockdown
researchProduct

Retene causes multifunctional transcriptomic changes in the heart of rainbow trout (Oncorhynchus mykiss) embryos

2015

Fish are particularly sensitive to aryl hydrocarbon receptor (AhR)-mediated developmental toxicity. The molecular mechanisms behind these adverse effects have remained largely unresolved in salmonids, and for AhR-agonistic polycyclic aromatic hydrocarbons (PAHs). This study explored the cardiac transcriptome of rainbow trout (Oncorhynchus mykiss) eleuteroembryos exposed to retene, an AhR-agonistic PAH. The embryos were exposed to retene (nominal concentration 32 μg/L) and control, their hearts were collected before, at and after the onset of the visible signs of developmental toxicity, and transcriptomic changes were studied by microarray analysis. Retene up- or down-regulated 122 genes. Th…

0301 basic medicineEmbryo Nonmammaliananimal structuresHealth Toxicology and Mutagenesista1172Developmental toxicityProtein metabolismdioxin-like toxicityEmbryonic Development010501 environmental sciencesToxicologyBioinformatics01 natural sciencesTranscriptome03 medical and health scienceschemistry.chemical_compoundfish embryotranscriptomicsAnimalsOligonucleotide Array Sequence Analysis0105 earth and related environmental sciencesPharmacologyRetenebiologyGene Expression Profilingta1184ta1182Gene Expression Regulation DevelopmentalHeartLipid metabolismGeneral MedicinePhenanthrenesAryl hydrocarbon receptorCell biology030104 developmental biologychemistryOncorhynchus mykissbiology.proteinta1181Rainbow troutSignal transduction
researchProduct

Analysis of the effects of innovative radiotherapy treatments in zebrafish

2023

RadioprotectionCurcuminRadiotherapySettore BIO/11 - Biologia MolecolareZebrafish embryoZebrafish
researchProduct

Mn(II) complexes of scorpiand-like ligands. A model for the MnSOD active centre with high in vitro and in vivo activity

2015

Manganese complexes of polyamines consisting of an aza-pyridinophane macrocyclic core functionalised with side chains containing quinoline or pyridine units have been characterised by a variety of solution techniques and single crystal x-ray diffraction. Some of these compounds have proved to display interesting antioxidant capabilities in vitro and in vivo in prokaryotic (bacteria) and eukaryotic (yeast and fish embryo) organisms. In particular, the Mn complex of the ligand containing a 4-quinoline group in its side arm which, as it happens in the MnSOD enzymes, has a water molecule coordinated to the metal ion that shows the lowest toxicity and highest functional efficiency both in vitro …

Fish ProteinsSaccharomyces cerevisiae ProteinsStereochemistryOryziasSaccharomyces cerevisiaeLigandsFish embryo modelsBiochemistryAntioxidantsInorganic Chemistrychemistry.chemical_compoundAntioxidant activityIn vivoCatalytic DomainPyridineSide chainEscherichia coliAnimalschemistry.chemical_classificationManganeseBacteriaLigandSuperoxide DismutaseEscherichia coli ProteinsQuinolineYeastIn vitroYeastMn(II) complexesEnzymechemistryModels ChemicalPolyazamacrocyclic scorpiandsQuinolines
researchProduct

Zebrafish Embryos Allow Prediction of Nanoparticle Circulation Times in Mice and Facilitate Quantification of Nanoparticle–Cell Interactions

2020

The zebrafish embryo is a vertebrate well suited for visualizing nanoparticles at high resolution in live animals. Its optical transparency and genetic versatility allow noninvasive, real-time observations of vascular flow of nanoparticles and their interactions with cells throughout the body. As a consequence, this system enables the acquisition of quantitative data that are difficult to obtain in rodents. Until now, a few studies using the zebrafish model have only described semiquantitative results on key nanoparticle parameters. Here, a MACRO dedicated to automated quantitative methods is described for analyzing important parameters of nanoparticle behavior, such as circulation time and…

NANOCARRIERSEmbryo Nonmammalianmiceanimal structurescirculation timeCellNanoparticleLIPOSOMES02 engineering and technology010402 general chemistry01 natural sciencesSEQUENCEBiomaterialsMiceDELIVERYmedicineMedicine and Health SciencesAnimalsGeneral Materials ScienceZebrafishZebrafishbiologyChemistryMacrophagesEndothelial CellsOptical transparencyPLGAGeneral ChemistryTARGETING MACROPHAGES021001 nanoscience & nanotechnologybiology.organism_classificationzebrafishCANCER0104 chemical sciencesCell biologymacrophagesChemistrymedicine.anatomical_structureCell cultureembryonic structuresZebrafish embryoNanoparticlesCirculation timenanoparticlesNanocarriers0210 nano-technologyANTIBIOTICSBiotechnology
researchProduct

UV-B exposure causes DNA damage and changes in protein expression in northern pike (Esox lucius) posthatched embryos.

2012

The ongoing anthropogenically caused ozone depletion and climate change has increased the amount of biologically harmful UV-B radiation, which is detrimental to fish in embryonal stages. The effects of UV-B radiation on the levels and locations of DNA damage manifested as cyclobutane pyrimidine dimers (CPDs), heat shock protein 70 (HSP70) and p53 protein in newly hatched embryos of pike were examined. Pike larvae were exposed in the laboratory to current and enhanced doses of UV-B radiation. UV-B exposure caused the formation of CPDs in a fluence rate-dependent manner, and the CPDs were found deeper in the tissues with increasing fluence rates. UV-B radiation induced HSP70 in epidermis, and…

p53Embryo NonmammalianDNA damagehaukiUltraviolet RaysBlotting WesternNorthern pikeGene ExpressionPyrimidine dimerBiologyEyeBiochemistryProtein expressionultravioletti-B-säteilyDNA-vauriotAnimalsHSP70 Heat-Shock ProteinsPhysical and Theoretical ChemistryEsoxHSP70kalan alkiopoikasetPikecomputer.programming_languageEpidermis (botany)BrainEmbryoGeneral MedicineAnatomybiology.organism_classificationMolecular biologyultraviolet-BImmunohistochemistryfish embryosHsp70Pyrimidine DimersEsocidaeDNA damageEpidermisTumor Suppressor Protein p53computerDNA DamagePhotochemistry and photobiology
researchProduct

Larval zebrafish as an in vitro model for evaluating toxicological effects of mycotoxins.

2020

The presence of mycotoxins in food has created concern. Mycotoxin prevalence in our environment has changed in the last few years maybe due to climatic and other environmental changes. Evidence has emerged from in vitro and in vivo models: some mycotoxins have been found to be potentially carcinogenic, embryogenically harmful, teratogenic, and to generate nephrotoxicity. The risk assessment of exposures to mycotoxins at early life stages became mandatory. In this regard, the effects of toxic compounds on zebrafish have been widely studied, and more recently, mycotoxins have been tested with respect to their effects on developmental and teratogenic effects in this model system, which offers …

animal structuresEmbryo NonmammalianHealth Toxicology and Mutagenesis0211 other engineering and technologiesDevelopmental toxicityModel system02 engineering and technology010501 environmental sciencesBioinformatics01 natural sciencesArticleIn vitro modelchemistry.chemical_compoundZebrafish larvaeAnimalsMycotoxinZebrafishZebrafish0105 earth and related environmental sciences021110 strategic defence & security studiesbiologyPublic Health Environmental and Occupational Healthtechnology industry and agriculturefood and beveragesGeneral MedicineMycotoxinsbiology.organism_classificationPollutionEarly lifeTeratogenschemistryLarvaembryonic structuresZebrafish embryoWater Pollutants Chemical
researchProduct